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Figure 1a.  The reference eleven-step ML 

Pipeline. 

 

Figure 1b.  Excerpt of the full ML FMEA Template containing 
the first two ML Pipeline steps: Collect Data Requests and 

Collect Data. 

 

Abstract 

The integration of Machine Learning (ML) into safety-critical applications continues to 
raise challenges related to risk management and standardization. This paper presents a 
structured approach to safe ML development, readily applicable to sectors such as 
automotive, autonomous vehicles and systems, defense, healthcare, pharmaceuticals, 
manufacturing, logistics, and aerospace. The proposed method addresses a current gap 
in existing AI and ML standards by combining established ML development practices with 
the Process Failure Mode and Effects Analysis (PFMEA) framework. This approach 
considers ML development as a holistic, iterative process, emphasizing the importance of 
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risk identification and mitigation throughout the pipeline rather than focusing exclusively 
on model performance. Each stage of a typical ML pipeline is examined, with associated 
failure modes and corresponding mitigations defined. To support practical 
implementation, the paper includes a pre-populated ML FMEA Template, designed to 
assist machine learning development teams in assessing, documenting, and 
communicating risks, while facilitating coordination with safety and assurance 
stakeholders. 

Introduction 

Incorporating machine learning into a safe product is a challenge within many industries 
today including automotive, autonomous vehicles, defense and security, healthcare, 
pharmaceuticals, manufacturing and industrial robotics, warehouse distribution, 
aerospace, etc.  It presents a unique set of challenges that differ from those encountered 
in traditional, deterministic software systems. One primary challenge is the inherent 
complexity and opacity of ML models. Unlike conventional software, where decisions are 
based upon explicit, human-written code, ML models often operate as black boxes, 
making it difficult to understand how decisions are made. This lack of transparency can 
be problematic in safety-critical applications, where understanding the decision-making 
process is crucial for verifying and validating the system’s behavior. 

Another significant challenge is the variability in ML performance due to changes in input 
data. Machine learning models rely on data to learn and make predictions. However, if 
the operational environment differs from the training environment, the model’s 
performance can degrade, leading to potentially unsafe decisions. Ensuring that the ML 
model can generalize well to new, previously unseen scenarios is vital, yet challenging, 
especially in safety-critical systems where failures can have severe consequences. 

Additionally, the verification and validation (V&V) of ML components in safety-critical 
systems are complex and not yet standardized. Traditional V&V methods for software 
systems involve extensive testing and formal methods to prove correctness and 
reliability. However, applying these methods to ML models is difficult due to their 
probabilistic nature and the vastness of potential input scenarios. This necessitates the 
development of new V&V techniques tailored for ML, which can rigorously ensure the 
safety and reliability of these systems. 

Regulatory and certification issues pose another challenge. Our automotive application 
has stringent regulatory requirements and standards that must be met. These standards 
are often based on the assumption of deterministic and well-understood system 
behaviors, which conflicts with the probabilistic and opaque nature of ML models. 

Related Work 

Standards Review 

Several established standards that are widely used to guide the development and 
deployment of autonomous vehicles (e.g. ISO 21448 [1] and UL 4600 [2]) as well as 
emerging standards such as ISO PAS 8800 [3] make reference to the need to ensure the 
safety of ML applications. For example, the ISO 21448 Safety of the Intended 
Functionality (SOTIF) standard states that it is necessary to identify potential functional 
insufficiencies associated with the “specification of machine learning” as well as 
“measurement data for machine learning”. Annex D of ISO 21448 describes the need to 
conduct an “analysis of off-line training process of machine learning algorithms” (Section 
D.2.5). UL 4600 also refers to several required activities in order to satisfy safety claims 
about ML algorithms used in autonomous vehicles. Some examples include: 
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1. Arguments that V&V procedures follow best practices for machine learning (8.5.2.2) 
2. Evidence of suitable engineering rigor in the use of tools and techniques that are 

safety related (8.5.2.2) 
3. Machine learning training and V&V shall use acceptable data (8.5.3) 
4. Machine learning-based functionality shall be acceptably robust to data variation 

The recently published technical regulation ISO TR 5469 [4] lists fault model 
methodologies including the performance of a FMEA “at the process level”.  However, 
little guidance is provided.  The emerging standard ISO PAS 8800 deals specifically with 
safety of ML algorithms similarly and prescribes the need for analyses to ensure that 
engineering rigor and best practices are applied to the ML pipeline.  

In summary, while the above standards mention the need to systematically ensure safety 
of ML, they fail to prescribe specific techniques and methodologies to ensure that all 
engineering and V&V activities involving the holistic ML pipeline are performed in a 
satisfactorily rigorous manner in order to argue with sufficient evidence that the ML 
algorithm when deployed in an AV application is absent unreasonable risk. 

Literature Review  

In addition to the standards literature several notable and recent publications have begun 
exploration of ML within safety applications. Salay et al. [5] identified gaps within ISO 
26262 Part 6 software development process and proposed new requirements to address.  
The requirements sought to increase the model’s functional clarity and interpretability.  
Studer et al. [6] adapt an established data mining approach for machine learning and 
propose a method for ML quality assurance.  While notable, the topic of safety is not 
addressed.  Faria’s (2018) [7] survey of ML safety presents ML characteristics that safety 
engineers should become familiar with in order to better understand potential failure 
modes such as Markov Decision Process and safe reinforcement learning issues. 
Mohseni et al. (2022) [8] provided a taxonomy of machine learning safety by linking key 
safety principles to machine learning safety limitations. They discuss three strategies that 
should be employed for safe machine learning; these are, inherently safe design, 
enhancing performance & robustness and run time error detection. Salay et al (2019) [9] 
applied an FMEA to an AI classification model and applied it to a AD case study. Most 
recently the International Systems Safety Society 2024 conference focused on machine 
learning safety. One example from this conference is the introduction of the STPAI where 
Murphy (2024) [10] applied STPA to an AI chatbot.  

In summary, a literature review shows that the field of AI safety is continuing to grow and 
is moving from performance to quality assurance to safety via rethinking and adapting 
established formal safety analyses. None of the methods reviewed directly connect ML 
Pipeline step with specific ML failure modes with known mitigations. 

The Contribution 

This paper details two main contributions:   

The ML FMEA Method.  The contribution of this paper combines a proven method to 
mitigate risk in the automotive industry with machine learning best practices. It looks at 
machine learning as a process (i.e., the ML pipeline), rather than a model and applies the 
automotive Process Failure Mode & Effects Analysis (PFMEA) to identify, prioritize, and 
mitigate risk. The method directly connects ML Pipeline step with relevant failure modes 
with known mitigations. 
 
The ML FMEA Template.  Another contribution of this paper is providing the Machine 
Learning FMEA Template.  The ML FMEA Template connects ML development pipeline 
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failure modes with machine learning best practices as mitigations.  The intent of the 
template is to enable development teams to assess risk to the machine learning model 
development and tailor specific mitigations.  Since the ML FMEA Template generally 
follows the Process FMEA flow, the approach is designed to be transparent and familiar 
to reviewers and experienced safety professionals.   

 

Laying the Foundation 

Before detailing the ML FMEA Method, a basic background on the machine learning 
development pipeline and the process failure analysis tool is needed.   

The Machine Learning Pipeline 

A typical machine learning pipeline is a structured process that begins with data 
collection, followed by preprocessing steps like cleaning, normalization, and feature 
engineering to prepare data for model training. Once the model is trained, tested, and 
optimized, it is deployed, with ongoing monitoring to ensure performance and retraining 
when necessary. 

While there are several variants of the machine learning pipeline [11] [12] [13], this paper 
will utilize the eleven step pipeline shown in Figure 1 and referenced throughout the 
paper.  To clarify the value addition of each pipeline step, the authors have phrased each 
pipeline step in the form of a function:   

1. Collect Data Requests 
2. Collect Data 
3. Ingest Data 
4. Validate Data 
5. Preprocess Data 
6. Train Model 
7. Tune Model 
8. Analyze Model 
9. Deploy Model 
10. Validate Model 
11. Analyze Model Feedback 
 

 

The Process FMEA 

The Process Failure Mode and Effects Analysis (PFMEA) [14] [15] [16] [17] [18] is a 
proven method employed widely across the automotive, defense and military, energy, 
medical devices, pharmaceuticals, manufacturing, industrial robotics, and aerospace 
industries.  A PFMEA is a systematic method used to identify and mitigate potential 
failure modes in processes within the automotive industry. Although its typical use is in 
manufacturing settings, it is often applied to processes in general. The primary objective 
of PFMEA is to enhance product quality, reliability, and safety by preemptively 
addressing process weaknesses that could lead to defects or failures. This analysis 
involves a detailed examination of each step in the process to identify possible failure 
modes, their causes, and their effects on the overall system. By assessing the severity, 
occurrence, and detection of each potential failure, PFMEA helps prioritize risks and 
develop effective countermeasures to prevent or control these failures. 
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The PFMEA process typically involves a cross-functional team comprising engineers and 
other relevant process stakeholders. Together, they systematically review each process 
step, brainstorming potential failure modes and documenting their findings. The team 
assigns a risk priority number (RPN) to each identified failure mode, calculated by 
multiplying the severity, occurrence, and detection ratings. High RPNs indicate areas that 
require immediate attention and corrective actions. By implementing these actions, such 
as redesigning process steps, enhancing process controls, or improving detection 
methods, the team aims to reduce the likelihood and impact of failures, thereby ensuring 
a more robust and reliable manufacturing process for automotive components.  When a 
high RPN is identified the safety engineer prescribes a strategy to detect the failure and 
respond appropriately so that a safety critical system fails safe or fails operational.  

The PFMEA process and associated artifacts are well established and understood across 
numerous industries.  As such safety professionals are readily able to analyze the 
associated living documents and artifacts.  They are able to identify high risk areas, areas 
needing corrective actions, and unmitigated risk gaps.     

The ML FMEA Method 

Here is a detailed breakdown of each step in the machine learning pipeline, including 
related potential failure points if the step is not executed well.  Connected with these 
failure points are best practices or mitigation to minimize failures and ensure safe 
machine learning.  The authors note that the mitigations are typically known to ML 
experts and deployed in an agile manner to address model performance deltas rather 
than from a holistic, proactive safety and failure mode method.  

For added clarity, examples of mitigations are provided from an ML pipeline model 
development intended for use in an autonomous vehicle application.   

Step 1:  Collect Data Requests 

Description:  Data collection requests initiate the entire machine learning (ML) pipeline 
by specifying the types of data needed for model training and evaluation. The request 
defines the scope of the problem, the features to be used, and the relevant sources of 
data. This step is crucial because the quality, relevance, and availability of the data 
directly impact the model's performance and safety. 

Potential Failure 1: Incomplete or insufficient data requested for collection can lead to 
an incomplete or insufficient training dataset. 

• Possible Mitigation: Clear Problem Definition and Goal Alignment. The data 
collection requests must align with the goals of the machine learning project. The 
clearer the definition of the problem, the more specific the data request will be. 
This reduces the chance of irrelevant or noisy data, which can lead to model 
errors. Clear goal alignment ensures that data relevant to the learning task is 
collected, reducing the risk of introducing biases or irrelevant information into the 
model. 

Potential Failure 2: Incorrect prioritization of data collection requests can lead to biased 
or incorrect models.  

• Possible Mitigation: Cross-Functional Input. Collaborate with domain experts 
to ensure that data requests reflect operational realities and domain-specific 
knowledge. This reduces the chance of missing important data dimensions or 
collecting incomplete datasets.  By leveraging domain expertise, the data 
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collected is more representative of real-world use cases, preventing models from 
making inaccurate assumptions due to incomplete or misunderstood data 
sources. 

Potential Failure 3: Late or lengthy data collection requests can cause models to be 
trained on outdated information (such as changing of seasons). 

• Possible Mitigation: Constraints for Collection. Data collection requests 
should include constraints to ensure the collected data intent is met. For 
example, data may have to be geographically constrained, seasonally 
constrained, or constrained by other conditions such as time of day or 
precipitation.  

 

Step 2: Collect Data 

Description: Data collection involves gathering raw data from identified sources such as 
sensors, databases, or user inputs. This is a critical step as the quality, volume, and 
diversity of the collected data will significantly influence the performance and 
generalization of the ML model. 

Potential Failure 1: Incomplete or insufficient data collected can lead to an incomplete or 
insufficient training dataset. 

• Possible Mitigation: Diverse and Representative Sampling. Ensure that data 
collection captures a wide variety of scenarios, especially edge cases and rare 
events. This ensures that the model learns from a comprehensive set of 
examples. By collecting data that covers the full spectrum of possible situations, 
models are less likely to fail when encountering novel or unexpected inputs. 

Potential Failure 2: Manual data collected is incorrect or does not match the intent of the 
collection request. 

• Possible Mitigation: Automated Data Collection with Monitoring. Automate 
data collection wherever possible to minimize human error and introduce robust 
monitoring to detect anomalies or data drift during collection. Automation reduces 
the likelihood of introducing errors from manual data handling, while continuous 
monitoring ensures data quality and integrity remain high, preventing issues 
downstream in the pipeline.  An excellent example of automated data collection 
for autonomous vehicle model development is active learning with language 
embedding. [19] 

Potential Failure 3: Late or lengthy collection of data can cause models to be trained on 
outdated or incorrect information (such as changing of seasons). 

• Possible Mitigation: Constraints for Collection. Data collection should have 
clear constraints that may impact representative data collection. For example, 
data may have to be geographically constrained, seasonally constrained, or 
constrained by other conditions such as time of day or precipitation.  

 

Step 3:  Ingest Data 

Description: Data ingestion is the process of collecting and importing data from various 
sources for immediate use or storage in a database. This step ensures that 
comprehensive and reliable data is gathered, forming the foundation for the entire 
machine learning pipeline. 
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Potential Failure 1: Incomplete or inaccurate data collection can lead to biased or 
incorrect models. 

• Possible Mitigation: Automate the Ingestion Process. Utilize robust ETL 
(Extract, Transform, Load) tools and frameworks to automate data collection. 
Automation ensures consistent and error-free data collection, preventing gaps 
and inconsistencies that could compromise model performance. Automation 
minimizes human error, ensuring that data is ingested accurately and efficiently, 
thus reducing the risk of introducing incomplete or erroneous data. 

Potential Failure 2: Security breaches during data ingestion can compromise sensitive 
data, leading to ethical and legal issues. 

• Maintain Data Security. Secure data transmission through encryption and 
ensure compliance with data protection regulations. Use access controls and 
audit logs to monitor data access. Protecting sensitive information during 
ingestion prevents unauthorized access and ensures the trustworthiness of the 
data used for training. 

Potential Failure 3: Delays in data ingestion can cause models to be trained on outdated 
information. 

• Possible Mitigation: Ensure Data Quality. Implement initial data checks for 
integrity, accuracy, and completeness. Tools like Apache Griffin or Great 
Expectations can automatically detect and rectify anomalies. Ensuring data 
quality from the start reduces the risk of the model learning incorrect patterns, 
improving the reliability of the model's predictions. 

Additional Examples: Data quality issues during the data ingestion process in 
autonomous driving systems often stem from synchronization, communication, and data 
format inconsistencies. Here is a breakdown of common challenges and mitigation 
strategies from an autonomous vehicle application example.  Note that these example 
challenges are likely common across other industries such as defense, aerospace, 
medical device, pharmaceutical, etc., that employ Machine Learning within a complex 
system with redundant or complementary sensing systems.   

• Sensor Synchronization Issues: Misalignment in the timing of data collected 
from multi-modal sensors, such as cameras, RADAR and LiDAR, can result in 
inconsistencies. To mitigate this, time-stamping sensor data and utilizing real-
time synchronization methods help align the data more accurately. Additionally, 
leveraging multi-modal redundancy—cross-referencing data from different 
sensors—can identify and correct temporal misalignments. [20] [21] 

• Dropped Messages: Data packet loss during transmission can create gaps in 
the data stream, potentially missing crucial information. Buffering and retry 
mechanisms are effective in ensuring that lost packets are re-transmitted. 
Additionally, multi-modal redundancy, using other sensors to verify missing data, 
can help bridge these gaps.  

• Data Format Inconsistencies: Data from different sensors often comes in 
various formats, resolutions, or coordinate systems (autonomous vehicle 
example: point clouds from LiDAR, images from cameras, and radar readings). 
Furthermore during the development process the respective firmware get 
updated, leading to increased capabilities over the development cycle. These 
inconsistencies can create challenges during data fusion, leading to 
misinterpretations or loss of information. Implementing standardized data 
formats, using preprocessing pipelines to align resolutions, and running 
consistency checks can ensure uniformity across sensor data, enabling 
seamless integration in later stages. [22]  
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These strategies focus on ensuring the consistent collection, transmission, and formatting 
of sensor data, creating a robust foundation for accurate analysis in the subsequent 
stages of the autonomous ML pipeline. 

Step 4:  Validate Data 

Description: Data validation involves verifying that the collected data meets quality 
standards and is suitable for analysis. This step ensures the data is accurate, complete, 
and free from significant errors before it progresses further in the pipeline. 

Potential Failure 1: Invalid or corrupt data can lead to erroneous model training and 
predictions. 

• Possible Mitigation: Schema Validation. Enforce data structure and type 
constraints through schema definitions. Tools like JSON Schema or Apache Avro 
can automate schema validation. Schema validation catches and corrects errors 
early, preventing structural inconsistencies that could lead to model misinterpretation 
and incorrect learning. 

Potential Failure 2: Undetected anomalies can introduce biases and reduce model 
performance. 

• Possible Mitigation: Anomaly Detection. Implement automated checks to detect 
and handle anomalies such as outliers, missing values, and duplicate records. 
Identifying and mitigating anomalies ensures the model learns from clean, consistent 
data, reducing the risk of learning misleading patterns.  A good example of anomaly 
detection for autonomous driving is the survey method. [23] 

Potential Failure 3: Lack of validation can result in using incompatible or irrelevant data 
for training. 

• Possible Mitigation: Consistent Monitoring. Continuously monitor data quality 
metrics and set up alerts for significant deviations. Early detection and rectification of 
data issues help maintain the consistency and reliability of the data, reducing the 
risk of model degradation. 

Additional Examples: Validation processes ensure that ingested data maintains high 
quality, catching issues such as structural inconsistencies, projection errors, and 
anomalies. Key challenges and strategies include: 

1. Schema Validation: Enforcing data structure and type constraints through schema 
definitions ensures that the ingested data adheres to expected formats. Tools like 
JSON Schema or Apache Avro can automate schema validation, making it easier to 
detect and correct structural inconsistencies. Validating the schema in the datalake 
helps catch errors early, preventing issues like unexpected data structures that 
could lead to model misinterpretation and incorrect learning. 

2. Anomaly Detection: Automated checks for anomalies such as outliers, missing 
values, and duplicate records can help ensure the integrity of the data. These can 
be achieved by applying a large scale offline digital twin or model replaying the 
collected samples for comparison. This allows early detection of misbehaviors and 
provides important data samples for model refinement.  

3. Consistency Check: Another source of incompatible data in complex systems are 
sensor measurement discrepancies.  Aerospace Example: Inconsistent readings 
between redundant systems, such as differences in altitude measurements between 
two independent altimeters, may spawn autopilot misbehavior or fail-safe activation. 
Manufacturing Example: Within a manufacturing line sensors and monitoring 
systems such as temperature and pressure readings of a casting process.  Sterile 
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Pharmaceutical Line Example: Air particle counters and sterility test results may not 
align.   Autonomous Vehicle Example: An autonomous driving stack involves multi-
modal sensors such as LiDAR and stereo cameras which may not align and impact 
perception accuracy. During validation, cross-referencing multi-modal data ensures 
accurate alignment and data integrity.  

4. Dirty Sensor Prevention: Physical contaminants like dust or moisture on sensor 
lenses can distort data. Validation systems that compare current sensor readings 
against pre-recorded baselines can identify deviations caused by dirty sensors. 
Automated cleaning systems can mitigate this issue by keeping sensor surfaces 
clear. 

5. Sensor Configuration Check: Misalignment or calibration errors between sensors 
can lead to measurement inaccuracies. Automated calibration tools and validation 
checks during data ingestion ensure consistent alignment.  Aerospace Example: 
Misaligned or improperly calibrated sensors, such as those measuring pitch, roll, or 
yaw may compromise flight control system accuracy.   Manufacturing Example: 
Misalignment of robotic arms or tools may lead to imprecise assembly or 
measurements.  Pharmaceutical Example: Misaligned sensors or improperly 
calibrated pipetting systems used in liquid formulations may lead to incorrect 
ingredient volumes.  Autonomous Vehicle Example: Cross-referencing depth 
information from multiple sensor types, like LiDAR and stereo cameras, further aids 
in validating sensor alignment. Mis-calibrated datasets are marked and further 
refined in pre-processing steps.  

6. Software Continuous Integration: Software bugs or incompatibilities in sensor 
firmware can introduce data inconsistencies. Continuous integration testing and 
version control, paired with offline perception systems, help detect and address such 
anomalies during validation. 

A powerful data validation process can be applied by implementing the above described 
steps. Thereby, identifying errors early on ensures high quality datasets for downstream 
machine learning. Further continuous monitoring alongside cross-referencing methods 
and automated calibration can help to spot issues in the data collection fleet early and fix 
issues in the upstream processing steps.   

Step 5:  Preprocess Data 

Description: Data preprocessing involves cleaning and transforming raw data into a 
format suitable for model training. This step includes handling missing values, 
normalizing or scaling features, encoding categorical variables, and feature engineering. 

Potential Failure 1: Poor handling of missing values can introduce biases. 

• Possible Mitigation: Standardize Data Cleaning Procedures. Establish and 
follow standardized procedures for handling common data issues like missing values 
and outliers. Standardizing data cleaning procedures ensures consistency and 
reliability in the data used for training, reducing the risk of introducing biases and 
errors.  As a healthcare industry approach example, active label cleaning is a proven 
approach to clean noisy annotation labels. [24]   

Potential Failure 2: Incorrect normalization or scaling can distort relationships in the 
data. 

• Possible Mitigation: Automate Feature Engineering. Use automated feature 
engineering tools like Feature tools to systematically create and evaluate new 
features. Automation reduces the risk of overlooking critical data transformations, 
ensuring that the model captures all relevant information. 
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Potential Failure 3: Inadequate feature engineering can lead to suboptimal model 
performance. 

• Possible Mitigation: Document Transformations. Keep detailed records of all 
transformations applied to the data. Documentation ensures reproducibility and 
facilitates debugging, helping identify and correct preprocessing steps that may 
introduce errors. As an example for autonomous vehicle environmental sensing via 
lidar, LidarAugment can be employed to augment 3D objects for robust detection. 
[25]  

Step 6:  Train Model 

Description: Model training involves using preprocessed data to train machine learning 
models. This step includes selecting appropriate algorithms, configuring model 
parameters, and fitting the model to the training data. 

Potential Failure 1: Overfitting or underfitting can occur if the model is not trained 
properly. 

• Potential Mitigation: Use Cross-Validation. Employ techniques like k-fold cross-
validation to ensure the model's performance is consistent across different data 
subsets. Cross-validation provides a more reliable estimate of the model's 
generalization ability, reducing the risk of overfitting. 

Potential Failure 2: Incorrect algorithm selection can lead to poor model performance. 

• Potential Mitigation: Hyperparameter Optimization. Automate hyperparameter 
tuning with tools like Grid Search, Random Search, or Bayesian Optimization. 
Proper tuning ensures the model performs optimally, preventing underfitting or 
overfitting. 

Potential Failure 3: Poor parameter configuration can prevent the model from learning 
effectively. 

• Possible Mitigation: Monitor Training Process. Track training metrics such as 
loss and accuracy in real-time. Tools like Tensor Board provide visual insights into 
the training process. Real-time monitoring allows for early detection of issues and 
timely intervention, ensuring the model trains correctly. 

 

Step 7:  Tune Model 

Description: Model tuning involves fine-tuning the trained model to improve its 
performance. This step includes adjusting hyperparameters, selecting features, and 
potentially re-training the model with updated configurations. 

Potential Failure 1: Suboptimal hyperparameter settings can degrade model 
performance. 

• Possible Mitigation: Systematic Hyperparameter Tuning. Use systematic search 
methods or automated tools for hyperparameter tuning. Techniques like Bayesian 
Optimization or Hyperband systematically explore the hyperparameter space. 
Systematic tuning ensures optimal model performance and reduces the risk of 
suboptimal configurations that could degrade performance. 

Potential Failure 2: Irrelevant or redundant features can increase model complexity and 
reduce accuracy. 
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• Possible Mitigation: Feature Selection. Evaluate the importance of features and 
remove irrelevant or redundant ones. Techniques like Recursive Feature Elimination 
(RFE) or LASSO can help. Feature selection reduces model complexity and 
improves generalization, preventing overfitting and enhancing accuracy. 

Potential Failure 3: Lack of proper evaluation can result in a tuned model that does not 
generalize well. 

• Evaluate on Validation Set: Use a separate validation set to assess the 
performance of the tuned model. Proper evaluation prevents overfitting on the 
training data, ensuring the model's reliability in real-world applications. 

 

Step 8:  Analyze Model 

Description: Model analysis involves evaluating the performance of the model using 
various metrics and techniques. This step helps understand the model's behavior and 
identify areas for improvement. 

Potential Failure 1: Over-reliance on a single metric can provide an incomplete picture 
of model performance. 

• Possible Mitigation: Comprehensive Metrics. Use a range of evaluation metrics 
to cover different aspects of model performance. Multiple metrics provide a holistic 
understanding of model strengths and weaknesses, preventing optimization for a 
single aspect that might not capture all performance facets. 

Potential Failure 2: Failure to conduct thorough error analysis can leave critical issues 
unaddressed. 

• Possible Mitigation: Error Analysis. Conduct a thorough analysis of the model's 
errors to identify limitations and areas for improvement. Understanding 
misclassification patterns helps implement targeted refinements, preventing 
repeated mistakes and improving overall model accuracy. 

Potential Failure 3: Lack of clear visualizations can make it difficult to interpret and act 
on model performance data. 

• Possible Mitigations: Visualizations. Use visual tools like confusion matrices, 
ROC curves, and precision-recall curves to provide clear insights into the model's 
performance. Visualizations facilitate better interpretation and decision-making, 
helping identify and correct potential issues. 

 

Step 9:  Deploy Model 

Description: Model deployment involves integrating the trained model into a production 
environment where it can start making predictions on live data. This step requires careful 
planning to ensure the model operates efficiently and reliably in production. 

Potential Failure 1:  Inadequate infrastructure can lead to performance bottlenecks.   

• Possible Mitigation: Continuous Integration / Continuous Deployment (CI/CD). 
Implement CI/CD pipelines to automate the deployment process. CI/CD ensures 
smooth updates and minimizes manual errors, preventing deployment failures and 
maintaining model consistency. 

Potential Failure 2:  Poor monitoring can result in undetected performance degradation. 
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• Possible Mitigation:  Monitoring and Logging. Continuously monitor the deployed 
model performance and log predictions. Set up alerts and analyze logs to detect 
issues early.  Early detection allows for prompt intervention, preventing prolonged 
periods of poor performance and maintaining the model's reliability. 

Potential Failure 3:  Lack of rollback mechanisms can make it difficult to address issues 
post-deployment. 

• Possible Mitigation: Implement Software Rollback. A software rollback feature 
can revert the software back to a known release with known limitations that may 
have adequate mitigations.  

Potential Failure 4:  Integration can mask model failures and introduce integration 
failures 

• Possible Mitigation: Performance Thresholds. Define and adhere to performance 
thresholds that the model must meet before deployment. Ensuring the model meets 
required standards prevents the release of suboptimal models, maintaining high 
performance and reliability. 

Potential Failure 5:  Scaling of the deployed model can introduce unaccounted for 
effects. 

• Possible Mitigation:  Scalability and Reliability. Use scalable and reliable 
infrastructure to host the model. Cloud services like AWS, GCP, or Azure provide 
robust options.  Scalable infrastructure ensures the model can handle varying loads 
and maintain performance, preventing downtime and degraded performance. 

Potential Failure 6: Model learns incorrectly through on-line learning and failure is not 
identified through validation  

• Possible Mitigation: Do not enable on-line learning. On-line learning can lead to 
unvalidated content in the algorithm which can cause unwanted output. By not 
enabling on-line learning additional deployment and testing cycles may be 
necessary but it will mitigate deploying untested algorithms that may have undesired 
outputs. 

 

Step 10:  Validate Model 

Description: Model validation involves confirming that the model performs well on 
unseen data and meets required performance standards. This step typically involves 
using a test dataset or conducting a separate validation phase. 

Potential Failure 1: Overfitting to the training data can result in poor performance on 
new data. 

• Possible Mitigation: Holdout Validation. Use a holdout validation set or cross-
validation to ensure the model's performance generalizes well to new data. This 
practice provides a realistic estimate of how the model will perform in real-world 
scenarios, reducing the risk of overfitting. 

Potential Failure 2: Validation on an unrepresentative test set can provide a false sense 
of model reliability. 

• Possible Mitigation: Real-World Testing. Validate the model with real-world data, 
if possible. Real-world testing highlights discrepancies between the training 
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environment and real-world scenarios, preventing unexpected failures post-
deployment. 

Potential Failure 3: Validation to a dependent or derivative test set can provide a false 
sense of model reliability. 

• Possible Mitigation: Independent data set. Ensure an independent data set is 
collected, created, and curated for validation. 

Potential Failure 4: Ignoring real-world scenarios can lead to unexpected failures post-
deployment. 

• Possible Mitigation: Real-World Testing. See potential failure 2. 
 

Step 11:  Analyze Model Feedback 

Description: Model feedback involves collecting and analyzing the performance of the 
deployed model in the real world. This step helps identify any drift or degradation in 
model performance and provides insights for further improvements. 

Potential Failure 1: Lack of feedback can result in undetected performance drift. 

• Possible Mitigation 1: Feedback Loops. Establish feedback loops to collect data 
on the model's predictions and outcomes.  Continuous learning and improvement 
ensure that the model adapts to changing conditions, maintaining its accuracy and 
relevance. 

• Possible Mitigation 2:  Monitor for Drift. Continuously monitor for data and 
concept drift to ensure early detection of performance degradation. Tools like Alibi 
Detect can identify changes in data dynamics.  Monitoring for drift allows for timely 
retraining and updates to the model, preventing long-term degradation. 

• Possible Mitigation 3:  Performance indicators. Establish clear safety 
performance indicators that can capture ML issues.  Safety performance indicators 
that have an established range can identify emerging issues with a model before 
they become a hazard. 

Potential Failure 2:  Ignoring user feedback can lead to models that do not meet user 
needs. 

• Possible Mitigation:  User Dashboard.  Establish performance metrics from a user 
perspective.  Establish an appropriate frequency to capture user feedback as well as 
the dashboard presentation view for key decision makers.  

Potential Failure 3:  Delayed updates can cause the model to become obsolete. 

• Possible Mitigation:  Regular Updates. Schedule regular updates and retraining 
sessions for the model to incorporate new data and maintain performance.  Regular 
updates ensure the model stays current with the latest data, preventing 
obsolescence and maintaining high performance. 

 

Summary 

By following these best practices at each step of the machine learning pipeline, 
organizations can create a safer and more reliable machine learning system, minimizing 
failures and ensuring high-quality performance throughout the model's lifecycle. 
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The ML FMEA Template 

Another contribution is the ML FMEA Template.  The ML FMEA Template connects ML 
development pipeline failure modes with ML best practices as mitigations.  In many ways, 
the ML FMEA Template is framing and connecting the material above within a familiar, 
tabular format.  The intent of the ML FMEA Template is to enable development teams to 
identify and assess risk to the machine learning model development and tailor specific 
mitigations.  Additionally, it provides familiar transparency to safety assessors.   

Common Columns 

Most ML FMEA columns are common with a typical Process FMEA template.  These 
include Severity, Potential Effect on Higher Level System or Customer, Occurrence, 
Detection, RPN, Guide Words, Actions Recommended, and Owner.  The utilization of 
these columns is unchanged from standard practice.  See Figure 2 for the visualization.   

 

Figure 2.  ML FMEA columns common with a typical Process FMEA template. 

 

Modified Columns 

Columns that are modified or pre-populated within the ML FMEA Template include the 
following.

 

Figure 3. ML FMEA columns that are in common with a typical Process FMEA template. 
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Table 1. Tabulation of the ML FMEA columns, the correlating Process FMEA columns, 
and the modifications. 

 

Column Correlation Change 

Machine 
Learning 
Pipeline Step 

This column 
maps to the 
PFMEA 
Process 
Step/Function 
column. 

This column is 
populated with the 
steps of the ML 
Pipeline. 

Potential 
Failure Mode 
of the ML 
Model of 
Interest 

This column 
maps to the 
PFMEA 
Potential 
Failure Mode 
column. 

This column is 
populated with failure 
modes relevant to the 
specific ML Pipeline 
step.   

Potential ML 
Pipeline 
Causes 

This column 
maps to the 
PFMEA 
Potential 
Effects of 
Failure column. 

This column is 
populated with 
specific potential 
causes of the ML 
model failure modes. 

Current ML 
Pipeline Best 
Practice or 
Process 
Control 

This column 
maps to the 
PFMEA 
Current 
Controls 

This column is 
populated with ML 
Pipeline best practices 
or process controls 
that potentially 
mitigate the particular 
ML failure mode. 

 

Example rows 

To clarify the benefits of the ML FMEA Template, a few example rows are provided from 
the Ingesting Data pipeline step. 

As described within the ML FMEA Method Preprocess Data pipeline process step above 
a potential failure of Preprocess Data is “Poor handling of missing values can introduce 
biases”.  See Figure 4.  Within the ML FMEA Template this actually maps to a cause the 
Preprocess Data failure mode of “Insufficient data processing”, from the guide word 
“Missing”.  Within the Template, the ML Pipeline Best Practice is “Standardize Data 
Cleaning Procedures:..” as described above.     

From the guide word “Incorrect”, the next Preprocess Data failure mode “Insufficient data 
preprocessing” cause is “Incorrect normalization or scaling can distort relationships in the 
data”.  Within the ML FMEA Template this is linked to the ML Pipeline Best Practice, 
“Automate Feature Engineering:…” as described above. 

The third Preprocess Data failure mode, from the guide phrase “Too little” is “Insufficient 
data preprocessing”.  The associated cause is “Inadequate feature engineering can lead 
to suboptimal model performance”.  Within the ML FMEA Template this is linked to the 
ML Pipeline Best Practice, “Document Transformations”.  See Figure 4.   
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Figure 4.  Example ML FMEA rows from the Preprocess Data ML Pipeline step. 

 

The Detailed Template 

Figure 5 below is an excerpt of the ML FMEA Template containing the first two ML 
Pipeline Steps.  The full ML FMEA Template is provided in the Appendix for reference.  
Additionally, the ML FMEA Template is also available for review and download from 
github at  https://github.com/TallPaul67/MachineLearningFMEA. 

 

Figure 5.  Excerpt of the full ML FMEA Template containing the first two ML Pipeline 
steps: Collect Data Requests and Collect Data.  Full version is available for reviewing 

and download on github at github.com/TallPaul67/ MachineLearningFMEA 

 

Discussion 

This paper argues that the ML FMEA method and the ML FMEA Template are novel 
contributions that address gaps in the applicable standards involving the development 
and deployment of ML in safety critical applications across industries including 
automotive, autonomous vehicles, defense and security, healthcare, pharmaceuticals, 
manufacturing and industrial robotics, warehouse distribution, and aerospace.  The ML 
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FMEA approach is not designed to be a stand-alone tool, but rather key part of a 
comprehensive safety management system and safety case.   

Some of the benefits of the ML FMEA method and the ML FMEA Template applied to the 
ML pipeline include: 

1. The ML FMEA method can directly identify steps in the ML pipeline that could have 
the highest impact on risk and can therefore get higher levels of attention and 
diligence. 

2. The ML FMEA method can aid in demonstrating agreement with ISO TR 5469 which 
recommends a PFMEA for the offline training process.   

3. The ML FMEA method can aid in compliance with ISO PAS 8800 which requires the 
employment of an engineering rigor best practice. 

4. The ML FMEA Template can be used as a “checklist” to ensure that no critical steps 
were missed in the ML pipeline development. 

5. The ML FMEA Template can serve as a quick reference in the event of a 
performance limitation or failure in the field, providing the ability to quickly go back 
and review all the potential failures and mitigations to check if something in the ML 
pipeline was not sufficiently addressed and led to the performance degradation or 
failure, resulting in an update to the ML FMEA Template. 

6. The ML FMEA Template provides a systematic way of identifying and documenting 
functional insufficiencies and mitigations associated with the ML pipeline. 

7. The ML FMEA Template and ML FMEA method can serve as important evidence 
artifacts supporting a safety case claim that the ML pipeline was developed with the 
highest level of rigor. 

8. Since the ML FMEA Template generally follows the Process FMEA flow, the 
approach is designed to be transparent and familiar to reviewers and experienced 
safety professionals. 

The ML FMEA is a specific methodology that can address many if not all of the required 
and recommended activities described in the most widely followed standards governing 
the development and deployment of autonomous vehicles.  

Future Work  

The field of safety engineering analysis applied to machine learning is new with limited 
examples. Future work is needed to demonstrate a proof of concept that provides an 
example benefits of an applied ML FMEA approach.   

In a subsequent publication the authors intend to describe specific examples and benefits 
of applying the ML FMEA method. 

Additionally, it is worth noting that during the research and development of this approach 
a trend emerged.  When looking across the full ML Pipeline, potential failure modes fit 
into three categories: 

1. Data Issues: including bias, insufficient data or outdated data 
2. Model Limitations: including over or under fitting 
3. Deployment limitations: including integration failures or scalability 
 
The authors plan to study this classification further and evaluate as potential ML failure 
mode guide words, in a manner similar to FMEA guide words. [26]     
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Appendix 

The ML FMEA Template for reference is provided.  Note the pre-populated columns Machine Learning Pipeline Step, 
Potential Failure Mode of the ML Model of Interest, Potential ML Pipeline Causes, Current ML Pipeline Best Practice or 
Process Control.  The detailed ML FMEA Template is also available for review and download from github at  
https://github.com/TallPaul67/MachineLearningFMEA. 
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