
Torc Public | Page 1 of 23

Introducing The ML FMEA

A Safe Machine Learning Approach

Paul Schmitt, CSEP
Autonomy Software Systems & Safety,

Senior Manager
TORC Robotics

paul.schmitt@torc.ai

Bodo Seifert
Senior Automotive Functional

Safety Engineer
TÜV Rheinland

Bodo.Seifert@us.tuv.com

Jerry Lopez
Senior Director Safety Assurance

TORC Robotics
james.lopez@torc.ai

Mario Bijelic
Machine Learning Researcher

TORC Robotics
mario.bijelic@torc.ai

Krzysztof Pennar
Safety Principal Engineer

TORC Robotics
krzysztof.pennar@torc.ai

Felix Heide
Head of Artificial Intelligence

TORC Robotics
felix.heide@torc.ai

Figure 1a. The reference eleven-step ML

Pipeline.

Figure 1b. Excerpt of the full ML FMEA Template containing
the first two ML Pipeline steps: Collect Data Requests and

Collect Data.

Abstract

The integration of Machine Learning (ML) into safety-critical applications continues to
raise challenges related to risk management and standardization. This paper presents a
structured approach to safe ML development, readily applicable to sectors such as
automotive, autonomous vehicles and systems, defense, healthcare, pharmaceuticals,
manufacturing, logistics, and aerospace. The proposed method addresses a current gap
in existing AI and ML standards by combining established ML development practices with
the Process Failure Mode and Effects Analysis (PFMEA) framework. This approach
considers ML development as a holistic, iterative process, emphasizing the importance of

Torc Public | Page 2 of 23

risk identification and mitigation throughout the pipeline rather than focusing exclusively
on model performance. Each stage of a typical ML pipeline is examined, with associated
failure modes and corresponding mitigations defined. To support practical
implementation, the paper includes a pre-populated ML FMEA Template, designed to
assist machine learning development teams in assessing, documenting, and
communicating risks, while facilitating coordination with safety and assurance
stakeholders.

Introduction

Incorporating machine learning into a safe product is a challenge within many industries
today including automotive, autonomous vehicles, defense and security, healthcare,
pharmaceuticals, manufacturing and industrial robotics, warehouse distribution,
aerospace, etc. It presents a unique set of challenges that differ from those encountered
in traditional, deterministic software systems. One primary challenge is the inherent
complexity and opacity of ML models. Unlike conventional software, where decisions are
based upon explicit, human-written code, ML models often operate as black boxes,
making it difficult to understand how decisions are made. This lack of transparency can
be problematic in safety-critical applications, where understanding the decision-making
process is crucial for verifying and validating the system’s behavior.

Another significant challenge is the variability in ML performance due to changes in input
data. Machine learning models rely on data to learn and make predictions. However, if
the operational environment differs from the training environment, the model’s
performance can degrade, leading to potentially unsafe decisions. Ensuring that the ML
model can generalize well to new, previously unseen scenarios is vital, yet challenging,
especially in safety-critical systems where failures can have severe consequences.

Additionally, the verification and validation (V&V) of ML components in safety-critical
systems are complex and not yet standardized. Traditional V&V methods for software
systems involve extensive testing and formal methods to prove correctness and
reliability. However, applying these methods to ML models is difficult due to their
probabilistic nature and the vastness of potential input scenarios. This necessitates the
development of new V&V techniques tailored for ML, which can rigorously ensure the
safety and reliability of these systems.

Regulatory and certification issues pose another challenge. Our automotive application
has stringent regulatory requirements and standards that must be met. These standards
are often based on the assumption of deterministic and well-understood system
behaviors, which conflicts with the probabilistic and opaque nature of ML models.

Related Work

Standards Review

Several established standards that are widely used to guide the development and
deployment of autonomous vehicles (e.g. ISO 21448 [1] and UL 4600 [2]) as well as
emerging standards such as ISO PAS 8800 [3] make reference to the need to ensure the
safety of ML applications. For example, the ISO 21448 Safety of the Intended
Functionality (SOTIF) standard states that it is necessary to identify potential functional
insufficiencies associated with the “specification of machine learning” as well as
“measurement data for machine learning”. Annex D of ISO 21448 describes the need to
conduct an “analysis of off-line training process of machine learning algorithms” (Section
D.2.5). UL 4600 also refers to several required activities in order to satisfy safety claims
about ML algorithms used in autonomous vehicles. Some examples include:

Torc Public | Page 3 of 23

1. Arguments that V&V procedures follow best practices for machine learning (8.5.2.2)
2. Evidence of suitable engineering rigor in the use of tools and techniques that are

safety related (8.5.2.2)
3. Machine learning training and V&V shall use acceptable data (8.5.3)
4. Machine learning-based functionality shall be acceptably robust to data variation

The recently published technical regulation ISO TR 5469 [4] lists fault model
methodologies including the performance of a FMEA “at the process level”. However,
little guidance is provided. The emerging standard ISO PAS 8800 deals specifically with
safety of ML algorithms similarly and prescribes the need for analyses to ensure that
engineering rigor and best practices are applied to the ML pipeline.

In summary, while the above standards mention the need to systematically ensure safety
of ML, they fail to prescribe specific techniques and methodologies to ensure that all
engineering and V&V activities involving the holistic ML pipeline are performed in a
satisfactorily rigorous manner in order to argue with sufficient evidence that the ML
algorithm when deployed in an AV application is absent unreasonable risk.

Literature Review

In addition to the standards literature several notable and recent publications have begun
exploration of ML within safety applications. Salay et al. [5] identified gaps within ISO
26262 Part 6 software development process and proposed new requirements to address.
The requirements sought to increase the model’s functional clarity and interpretability.
Studer et al. [6] adapt an established data mining approach for machine learning and
propose a method for ML quality assurance. While notable, the topic of safety is not
addressed. Faria’s (2018) [7] survey of ML safety presents ML characteristics that safety
engineers should become familiar with in order to better understand potential failure
modes such as Markov Decision Process and safe reinforcement learning issues.
Mohseni et al. (2022) [8] provided a taxonomy of machine learning safety by linking key
safety principles to machine learning safety limitations. They discuss three strategies that
should be employed for safe machine learning; these are, inherently safe design,
enhancing performance & robustness and run time error detection. Salay et al (2019) [9]
applied an FMEA to an AI classification model and applied it to a AD case study. Most
recently the International Systems Safety Society 2024 conference focused on machine
learning safety. One example from this conference is the introduction of the STPAI where
Murphy (2024) [10] applied STPA to an AI chatbot.

In summary, a literature review shows that the field of AI safety is continuing to grow and
is moving from performance to quality assurance to safety via rethinking and adapting
established formal safety analyses. None of the methods reviewed directly connect ML
Pipeline step with specific ML failure modes with known mitigations.

The Contribution

This paper details two main contributions:

The ML FMEA Method. The contribution of this paper combines a proven method to
mitigate risk in the automotive industry with machine learning best practices. It looks at
machine learning as a process (i.e., the ML pipeline), rather than a model and applies the
automotive Process Failure Mode & Effects Analysis (PFMEA) to identify, prioritize, and
mitigate risk. The method directly connects ML Pipeline step with relevant failure modes
with known mitigations.

The ML FMEA Template. Another contribution of this paper is providing the Machine
Learning FMEA Template. The ML FMEA Template connects ML development pipeline

Torc Public | Page 4 of 23

failure modes with machine learning best practices as mitigations. The intent of the
template is to enable development teams to assess risk to the machine learning model
development and tailor specific mitigations. Since the ML FMEA Template generally
follows the Process FMEA flow, the approach is designed to be transparent and familiar
to reviewers and experienced safety professionals.

Laying the Foundation

Before detailing the ML FMEA Method, a basic background on the machine learning
development pipeline and the process failure analysis tool is needed.

The Machine Learning Pipeline

A typical machine learning pipeline is a structured process that begins with data
collection, followed by preprocessing steps like cleaning, normalization, and feature
engineering to prepare data for model training. Once the model is trained, tested, and
optimized, it is deployed, with ongoing monitoring to ensure performance and retraining
when necessary.

While there are several variants of the machine learning pipeline [11] [12] [13], this paper
will utilize the eleven step pipeline shown in Figure 1 and referenced throughout the
paper. To clarify the value addition of each pipeline step, the authors have phrased each
pipeline step in the form of a function:

1. Collect Data Requests
2. Collect Data
3. Ingest Data
4. Validate Data
5. Preprocess Data
6. Train Model
7. Tune Model
8. Analyze Model
9. Deploy Model
10. Validate Model
11. Analyze Model Feedback

The Process FMEA

The Process Failure Mode and Effects Analysis (PFMEA) [14] [15] [16] [17] [18] is a
proven method employed widely across the automotive, defense and military, energy,
medical devices, pharmaceuticals, manufacturing, industrial robotics, and aerospace
industries. A PFMEA is a systematic method used to identify and mitigate potential
failure modes in processes within the automotive industry. Although its typical use is in
manufacturing settings, it is often applied to processes in general. The primary objective
of PFMEA is to enhance product quality, reliability, and safety by preemptively
addressing process weaknesses that could lead to defects or failures. This analysis
involves a detailed examination of each step in the process to identify possible failure
modes, their causes, and their effects on the overall system. By assessing the severity,
occurrence, and detection of each potential failure, PFMEA helps prioritize risks and
develop effective countermeasures to prevent or control these failures.

Torc Public | Page 5 of 23

The PFMEA process typically involves a cross-functional team comprising engineers and
other relevant process stakeholders. Together, they systematically review each process
step, brainstorming potential failure modes and documenting their findings. The team
assigns a risk priority number (RPN) to each identified failure mode, calculated by
multiplying the severity, occurrence, and detection ratings. High RPNs indicate areas that
require immediate attention and corrective actions. By implementing these actions, such
as redesigning process steps, enhancing process controls, or improving detection
methods, the team aims to reduce the likelihood and impact of failures, thereby ensuring
a more robust and reliable manufacturing process for automotive components. When a
high RPN is identified the safety engineer prescribes a strategy to detect the failure and
respond appropriately so that a safety critical system fails safe or fails operational.

The PFMEA process and associated artifacts are well established and understood across
numerous industries. As such safety professionals are readily able to analyze the
associated living documents and artifacts. They are able to identify high risk areas, areas
needing corrective actions, and unmitigated risk gaps.

The ML FMEA Method

Here is a detailed breakdown of each step in the machine learning pipeline, including
related potential failure points if the step is not executed well. Connected with these
failure points are best practices or mitigation to minimize failures and ensure safe
machine learning. The authors note that the mitigations are typically known to ML
experts and deployed in an agile manner to address model performance deltas rather
than from a holistic, proactive safety and failure mode method.

For added clarity, examples of mitigations are provided from an ML pipeline model
development intended for use in an autonomous vehicle application.

Step 1: Collect Data Requests

Description: Data collection requests initiate the entire machine learning (ML) pipeline
by specifying the types of data needed for model training and evaluation. The request
defines the scope of the problem, the features to be used, and the relevant sources of
data. This step is crucial because the quality, relevance, and availability of the data
directly impact the model's performance and safety.

Potential Failure 1: Incomplete or insufficient data requested for collection can lead to
an incomplete or insufficient training dataset.

• Possible Mitigation: Clear Problem Definition and Goal Alignment. The data
collection requests must align with the goals of the machine learning project. The
clearer the definition of the problem, the more specific the data request will be.
This reduces the chance of irrelevant or noisy data, which can lead to model
errors. Clear goal alignment ensures that data relevant to the learning task is
collected, reducing the risk of introducing biases or irrelevant information into the
model.

Potential Failure 2: Incorrect prioritization of data collection requests can lead to biased
or incorrect models.

• Possible Mitigation: Cross-Functional Input. Collaborate with domain experts
to ensure that data requests reflect operational realities and domain-specific
knowledge. This reduces the chance of missing important data dimensions or
collecting incomplete datasets. By leveraging domain expertise, the data

Torc Public | Page 6 of 23

collected is more representative of real-world use cases, preventing models from
making inaccurate assumptions due to incomplete or misunderstood data
sources.

Potential Failure 3: Late or lengthy data collection requests can cause models to be
trained on outdated information (such as changing of seasons).

• Possible Mitigation: Constraints for Collection. Data collection requests
should include constraints to ensure the collected data intent is met. For
example, data may have to be geographically constrained, seasonally
constrained, or constrained by other conditions such as time of day or
precipitation.

Step 2: Collect Data

Description: Data collection involves gathering raw data from identified sources such as
sensors, databases, or user inputs. This is a critical step as the quality, volume, and
diversity of the collected data will significantly influence the performance and
generalization of the ML model.

Potential Failure 1: Incomplete or insufficient data collected can lead to an incomplete or
insufficient training dataset.

• Possible Mitigation: Diverse and Representative Sampling. Ensure that data
collection captures a wide variety of scenarios, especially edge cases and rare
events. This ensures that the model learns from a comprehensive set of
examples. By collecting data that covers the full spectrum of possible situations,
models are less likely to fail when encountering novel or unexpected inputs.

Potential Failure 2: Manual data collected is incorrect or does not match the intent of the
collection request.

• Possible Mitigation: Automated Data Collection with Monitoring. Automate
data collection wherever possible to minimize human error and introduce robust
monitoring to detect anomalies or data drift during collection. Automation reduces
the likelihood of introducing errors from manual data handling, while continuous
monitoring ensures data quality and integrity remain high, preventing issues
downstream in the pipeline. An excellent example of automated data collection
for autonomous vehicle model development is active learning with language
embedding. [19]

Potential Failure 3: Late or lengthy collection of data can cause models to be trained on
outdated or incorrect information (such as changing of seasons).

• Possible Mitigation: Constraints for Collection. Data collection should have
clear constraints that may impact representative data collection. For example,
data may have to be geographically constrained, seasonally constrained, or
constrained by other conditions such as time of day or precipitation.

Step 3: Ingest Data

Description: Data ingestion is the process of collecting and importing data from various
sources for immediate use or storage in a database. This step ensures that
comprehensive and reliable data is gathered, forming the foundation for the entire
machine learning pipeline.

Torc Public | Page 7 of 23

Potential Failure 1: Incomplete or inaccurate data collection can lead to biased or
incorrect models.

• Possible Mitigation: Automate the Ingestion Process. Utilize robust ETL
(Extract, Transform, Load) tools and frameworks to automate data collection.
Automation ensures consistent and error-free data collection, preventing gaps
and inconsistencies that could compromise model performance. Automation
minimizes human error, ensuring that data is ingested accurately and efficiently,
thus reducing the risk of introducing incomplete or erroneous data.

Potential Failure 2: Security breaches during data ingestion can compromise sensitive
data, leading to ethical and legal issues.

• Maintain Data Security. Secure data transmission through encryption and
ensure compliance with data protection regulations. Use access controls and
audit logs to monitor data access. Protecting sensitive information during
ingestion prevents unauthorized access and ensures the trustworthiness of the
data used for training.

Potential Failure 3: Delays in data ingestion can cause models to be trained on outdated
information.

• Possible Mitigation: Ensure Data Quality. Implement initial data checks for
integrity, accuracy, and completeness. Tools like Apache Griffin or Great
Expectations can automatically detect and rectify anomalies. Ensuring data
quality from the start reduces the risk of the model learning incorrect patterns,
improving the reliability of the model's predictions.

Additional Examples: Data quality issues during the data ingestion process in
autonomous driving systems often stem from synchronization, communication, and data
format inconsistencies. Here is a breakdown of common challenges and mitigation
strategies from an autonomous vehicle application example. Note that these example
challenges are likely common across other industries such as defense, aerospace,
medical device, pharmaceutical, etc., that employ Machine Learning within a complex
system with redundant or complementary sensing systems.

• Sensor Synchronization Issues: Misalignment in the timing of data collected
from multi-modal sensors, such as cameras, RADAR and LiDAR, can result in
inconsistencies. To mitigate this, time-stamping sensor data and utilizing real-
time synchronization methods help align the data more accurately. Additionally,
leveraging multi-modal redundancy—cross-referencing data from different
sensors—can identify and correct temporal misalignments. [20] [21]

• Dropped Messages: Data packet loss during transmission can create gaps in
the data stream, potentially missing crucial information. Buffering and retry
mechanisms are effective in ensuring that lost packets are re-transmitted.
Additionally, multi-modal redundancy, using other sensors to verify missing data,
can help bridge these gaps.

• Data Format Inconsistencies: Data from different sensors often comes in
various formats, resolutions, or coordinate systems (autonomous vehicle
example: point clouds from LiDAR, images from cameras, and radar readings).
Furthermore during the development process the respective firmware get
updated, leading to increased capabilities over the development cycle. These
inconsistencies can create challenges during data fusion, leading to
misinterpretations or loss of information. Implementing standardized data
formats, using preprocessing pipelines to align resolutions, and running
consistency checks can ensure uniformity across sensor data, enabling
seamless integration in later stages. [22]

Torc Public | Page 8 of 23

These strategies focus on ensuring the consistent collection, transmission, and formatting
of sensor data, creating a robust foundation for accurate analysis in the subsequent
stages of the autonomous ML pipeline.

Step 4: Validate Data

Description: Data validation involves verifying that the collected data meets quality
standards and is suitable for analysis. This step ensures the data is accurate, complete,
and free from significant errors before it progresses further in the pipeline.

Potential Failure 1: Invalid or corrupt data can lead to erroneous model training and
predictions.

• Possible Mitigation: Schema Validation. Enforce data structure and type
constraints through schema definitions. Tools like JSON Schema or Apache Avro
can automate schema validation. Schema validation catches and corrects errors
early, preventing structural inconsistencies that could lead to model misinterpretation
and incorrect learning.

Potential Failure 2: Undetected anomalies can introduce biases and reduce model
performance.

• Possible Mitigation: Anomaly Detection. Implement automated checks to detect
and handle anomalies such as outliers, missing values, and duplicate records.
Identifying and mitigating anomalies ensures the model learns from clean, consistent
data, reducing the risk of learning misleading patterns. A good example of anomaly
detection for autonomous driving is the survey method. [23]

Potential Failure 3: Lack of validation can result in using incompatible or irrelevant data
for training.

• Possible Mitigation: Consistent Monitoring. Continuously monitor data quality
metrics and set up alerts for significant deviations. Early detection and rectification of
data issues help maintain the consistency and reliability of the data, reducing the
risk of model degradation.

Additional Examples: Validation processes ensure that ingested data maintains high
quality, catching issues such as structural inconsistencies, projection errors, and
anomalies. Key challenges and strategies include:

1. Schema Validation: Enforcing data structure and type constraints through schema
definitions ensures that the ingested data adheres to expected formats. Tools like
JSON Schema or Apache Avro can automate schema validation, making it easier to
detect and correct structural inconsistencies. Validating the schema in the datalake
helps catch errors early, preventing issues like unexpected data structures that
could lead to model misinterpretation and incorrect learning.

2. Anomaly Detection: Automated checks for anomalies such as outliers, missing
values, and duplicate records can help ensure the integrity of the data. These can
be achieved by applying a large scale offline digital twin or model replaying the
collected samples for comparison. This allows early detection of misbehaviors and
provides important data samples for model refinement.

3. Consistency Check: Another source of incompatible data in complex systems are
sensor measurement discrepancies. Aerospace Example: Inconsistent readings
between redundant systems, such as differences in altitude measurements between
two independent altimeters, may spawn autopilot misbehavior or fail-safe activation.
Manufacturing Example: Within a manufacturing line sensors and monitoring
systems such as temperature and pressure readings of a casting process. Sterile

Torc Public | Page 9 of 23

Pharmaceutical Line Example: Air particle counters and sterility test results may not
align. Autonomous Vehicle Example: An autonomous driving stack involves multi-
modal sensors such as LiDAR and stereo cameras which may not align and impact
perception accuracy. During validation, cross-referencing multi-modal data ensures
accurate alignment and data integrity.

4. Dirty Sensor Prevention: Physical contaminants like dust or moisture on sensor
lenses can distort data. Validation systems that compare current sensor readings
against pre-recorded baselines can identify deviations caused by dirty sensors.
Automated cleaning systems can mitigate this issue by keeping sensor surfaces
clear.

5. Sensor Configuration Check: Misalignment or calibration errors between sensors
can lead to measurement inaccuracies. Automated calibration tools and validation
checks during data ingestion ensure consistent alignment. Aerospace Example:
Misaligned or improperly calibrated sensors, such as those measuring pitch, roll, or
yaw may compromise flight control system accuracy. Manufacturing Example:
Misalignment of robotic arms or tools may lead to imprecise assembly or
measurements. Pharmaceutical Example: Misaligned sensors or improperly
calibrated pipetting systems used in liquid formulations may lead to incorrect
ingredient volumes. Autonomous Vehicle Example: Cross-referencing depth
information from multiple sensor types, like LiDAR and stereo cameras, further aids
in validating sensor alignment. Mis-calibrated datasets are marked and further
refined in pre-processing steps.

6. Software Continuous Integration: Software bugs or incompatibilities in sensor
firmware can introduce data inconsistencies. Continuous integration testing and
version control, paired with offline perception systems, help detect and address such
anomalies during validation.

A powerful data validation process can be applied by implementing the above described
steps. Thereby, identifying errors early on ensures high quality datasets for downstream
machine learning. Further continuous monitoring alongside cross-referencing methods
and automated calibration can help to spot issues in the data collection fleet early and fix
issues in the upstream processing steps.

Step 5: Preprocess Data

Description: Data preprocessing involves cleaning and transforming raw data into a
format suitable for model training. This step includes handling missing values,
normalizing or scaling features, encoding categorical variables, and feature engineering.

Potential Failure 1: Poor handling of missing values can introduce biases.

• Possible Mitigation: Standardize Data Cleaning Procedures. Establish and
follow standardized procedures for handling common data issues like missing values
and outliers. Standardizing data cleaning procedures ensures consistency and
reliability in the data used for training, reducing the risk of introducing biases and
errors. As a healthcare industry approach example, active label cleaning is a proven
approach to clean noisy annotation labels. [24]

Potential Failure 2: Incorrect normalization or scaling can distort relationships in the
data.

• Possible Mitigation: Automate Feature Engineering. Use automated feature
engineering tools like Feature tools to systematically create and evaluate new
features. Automation reduces the risk of overlooking critical data transformations,
ensuring that the model captures all relevant information.

Torc Public | Page 10 of 23

Potential Failure 3: Inadequate feature engineering can lead to suboptimal model
performance.

• Possible Mitigation: Document Transformations. Keep detailed records of all
transformations applied to the data. Documentation ensures reproducibility and
facilitates debugging, helping identify and correct preprocessing steps that may
introduce errors. As an example for autonomous vehicle environmental sensing via
lidar, LidarAugment can be employed to augment 3D objects for robust detection.
[25]

Step 6: Train Model

Description: Model training involves using preprocessed data to train machine learning
models. This step includes selecting appropriate algorithms, configuring model
parameters, and fitting the model to the training data.

Potential Failure 1: Overfitting or underfitting can occur if the model is not trained
properly.

• Potential Mitigation: Use Cross-Validation. Employ techniques like k-fold cross-
validation to ensure the model's performance is consistent across different data
subsets. Cross-validation provides a more reliable estimate of the model's
generalization ability, reducing the risk of overfitting.

Potential Failure 2: Incorrect algorithm selection can lead to poor model performance.

• Potential Mitigation: Hyperparameter Optimization. Automate hyperparameter
tuning with tools like Grid Search, Random Search, or Bayesian Optimization.
Proper tuning ensures the model performs optimally, preventing underfitting or
overfitting.

Potential Failure 3: Poor parameter configuration can prevent the model from learning
effectively.

• Possible Mitigation: Monitor Training Process. Track training metrics such as
loss and accuracy in real-time. Tools like Tensor Board provide visual insights into
the training process. Real-time monitoring allows for early detection of issues and
timely intervention, ensuring the model trains correctly.

Step 7: Tune Model

Description: Model tuning involves fine-tuning the trained model to improve its
performance. This step includes adjusting hyperparameters, selecting features, and
potentially re-training the model with updated configurations.

Potential Failure 1: Suboptimal hyperparameter settings can degrade model
performance.

• Possible Mitigation: Systematic Hyperparameter Tuning. Use systematic search
methods or automated tools for hyperparameter tuning. Techniques like Bayesian
Optimization or Hyperband systematically explore the hyperparameter space.
Systematic tuning ensures optimal model performance and reduces the risk of
suboptimal configurations that could degrade performance.

Potential Failure 2: Irrelevant or redundant features can increase model complexity and
reduce accuracy.

Torc Public | Page 11 of 23

• Possible Mitigation: Feature Selection. Evaluate the importance of features and
remove irrelevant or redundant ones. Techniques like Recursive Feature Elimination
(RFE) or LASSO can help. Feature selection reduces model complexity and
improves generalization, preventing overfitting and enhancing accuracy.

Potential Failure 3: Lack of proper evaluation can result in a tuned model that does not
generalize well.

• Evaluate on Validation Set: Use a separate validation set to assess the
performance of the tuned model. Proper evaluation prevents overfitting on the
training data, ensuring the model's reliability in real-world applications.

Step 8: Analyze Model

Description: Model analysis involves evaluating the performance of the model using
various metrics and techniques. This step helps understand the model's behavior and
identify areas for improvement.

Potential Failure 1: Over-reliance on a single metric can provide an incomplete picture
of model performance.

• Possible Mitigation: Comprehensive Metrics. Use a range of evaluation metrics
to cover different aspects of model performance. Multiple metrics provide a holistic
understanding of model strengths and weaknesses, preventing optimization for a
single aspect that might not capture all performance facets.

Potential Failure 2: Failure to conduct thorough error analysis can leave critical issues
unaddressed.

• Possible Mitigation: Error Analysis. Conduct a thorough analysis of the model's
errors to identify limitations and areas for improvement. Understanding
misclassification patterns helps implement targeted refinements, preventing
repeated mistakes and improving overall model accuracy.

Potential Failure 3: Lack of clear visualizations can make it difficult to interpret and act
on model performance data.

• Possible Mitigations: Visualizations. Use visual tools like confusion matrices,
ROC curves, and precision-recall curves to provide clear insights into the model's
performance. Visualizations facilitate better interpretation and decision-making,
helping identify and correct potential issues.

Step 9: Deploy Model

Description: Model deployment involves integrating the trained model into a production
environment where it can start making predictions on live data. This step requires careful
planning to ensure the model operates efficiently and reliably in production.

Potential Failure 1: Inadequate infrastructure can lead to performance bottlenecks.

• Possible Mitigation: Continuous Integration / Continuous Deployment (CI/CD).
Implement CI/CD pipelines to automate the deployment process. CI/CD ensures
smooth updates and minimizes manual errors, preventing deployment failures and
maintaining model consistency.

Potential Failure 2: Poor monitoring can result in undetected performance degradation.

Torc Public | Page 12 of 23

• Possible Mitigation: Monitoring and Logging. Continuously monitor the deployed
model performance and log predictions. Set up alerts and analyze logs to detect
issues early. Early detection allows for prompt intervention, preventing prolonged
periods of poor performance and maintaining the model's reliability.

Potential Failure 3: Lack of rollback mechanisms can make it difficult to address issues
post-deployment.

• Possible Mitigation: Implement Software Rollback. A software rollback feature
can revert the software back to a known release with known limitations that may
have adequate mitigations.

Potential Failure 4: Integration can mask model failures and introduce integration
failures

• Possible Mitigation: Performance Thresholds. Define and adhere to performance
thresholds that the model must meet before deployment. Ensuring the model meets
required standards prevents the release of suboptimal models, maintaining high
performance and reliability.

Potential Failure 5: Scaling of the deployed model can introduce unaccounted for
effects.

• Possible Mitigation: Scalability and Reliability. Use scalable and reliable
infrastructure to host the model. Cloud services like AWS, GCP, or Azure provide
robust options. Scalable infrastructure ensures the model can handle varying loads
and maintain performance, preventing downtime and degraded performance.

Potential Failure 6: Model learns incorrectly through on-line learning and failure is not
identified through validation

• Possible Mitigation: Do not enable on-line learning. On-line learning can lead to
unvalidated content in the algorithm which can cause unwanted output. By not
enabling on-line learning additional deployment and testing cycles may be
necessary but it will mitigate deploying untested algorithms that may have undesired
outputs.

Step 10: Validate Model

Description: Model validation involves confirming that the model performs well on
unseen data and meets required performance standards. This step typically involves
using a test dataset or conducting a separate validation phase.

Potential Failure 1: Overfitting to the training data can result in poor performance on
new data.

• Possible Mitigation: Holdout Validation. Use a holdout validation set or cross-
validation to ensure the model's performance generalizes well to new data. This
practice provides a realistic estimate of how the model will perform in real-world
scenarios, reducing the risk of overfitting.

Potential Failure 2: Validation on an unrepresentative test set can provide a false sense
of model reliability.

• Possible Mitigation: Real-World Testing. Validate the model with real-world data,
if possible. Real-world testing highlights discrepancies between the training

Torc Public | Page 13 of 23

environment and real-world scenarios, preventing unexpected failures post-
deployment.

Potential Failure 3: Validation to a dependent or derivative test set can provide a false
sense of model reliability.

• Possible Mitigation: Independent data set. Ensure an independent data set is
collected, created, and curated for validation.

Potential Failure 4: Ignoring real-world scenarios can lead to unexpected failures post-
deployment.

• Possible Mitigation: Real-World Testing. See potential failure 2.

Step 11: Analyze Model Feedback

Description: Model feedback involves collecting and analyzing the performance of the
deployed model in the real world. This step helps identify any drift or degradation in
model performance and provides insights for further improvements.

Potential Failure 1: Lack of feedback can result in undetected performance drift.

• Possible Mitigation 1: Feedback Loops. Establish feedback loops to collect data
on the model's predictions and outcomes. Continuous learning and improvement
ensure that the model adapts to changing conditions, maintaining its accuracy and
relevance.

• Possible Mitigation 2: Monitor for Drift. Continuously monitor for data and
concept drift to ensure early detection of performance degradation. Tools like Alibi
Detect can identify changes in data dynamics. Monitoring for drift allows for timely
retraining and updates to the model, preventing long-term degradation.

• Possible Mitigation 3: Performance indicators. Establish clear safety
performance indicators that can capture ML issues. Safety performance indicators
that have an established range can identify emerging issues with a model before
they become a hazard.

Potential Failure 2: Ignoring user feedback can lead to models that do not meet user
needs.

• Possible Mitigation: User Dashboard. Establish performance metrics from a user
perspective. Establish an appropriate frequency to capture user feedback as well as
the dashboard presentation view for key decision makers.

Potential Failure 3: Delayed updates can cause the model to become obsolete.

• Possible Mitigation: Regular Updates. Schedule regular updates and retraining
sessions for the model to incorporate new data and maintain performance. Regular
updates ensure the model stays current with the latest data, preventing
obsolescence and maintaining high performance.

Summary

By following these best practices at each step of the machine learning pipeline,
organizations can create a safer and more reliable machine learning system, minimizing
failures and ensuring high-quality performance throughout the model's lifecycle.

Torc Public | Page 14 of 23

The ML FMEA Template

Another contribution is the ML FMEA Template. The ML FMEA Template connects ML
development pipeline failure modes with ML best practices as mitigations. In many ways,
the ML FMEA Template is framing and connecting the material above within a familiar,
tabular format. The intent of the ML FMEA Template is to enable development teams to
identify and assess risk to the machine learning model development and tailor specific
mitigations. Additionally, it provides familiar transparency to safety assessors.

Common Columns

Most ML FMEA columns are common with a typical Process FMEA template. These
include Severity, Potential Effect on Higher Level System or Customer, Occurrence,
Detection, RPN, Guide Words, Actions Recommended, and Owner. The utilization of
these columns is unchanged from standard practice. See Figure 2 for the visualization.

Figure 2. ML FMEA columns common with a typical Process FMEA template.

Modified Columns

Columns that are modified or pre-populated within the ML FMEA Template include the
following.

Figure 3. ML FMEA columns that are in common with a typical Process FMEA template.

Torc Public | Page 15 of 23

Table 1. Tabulation of the ML FMEA columns, the correlating Process FMEA columns,
and the modifications.

Column Correlation Change

Machine
Learning
Pipeline Step

This column
maps to the
PFMEA
Process
Step/Function
column.

This column is
populated with the
steps of the ML
Pipeline.

Potential
Failure Mode
of the ML
Model of
Interest

This column
maps to the
PFMEA
Potential
Failure Mode
column.

This column is
populated with failure
modes relevant to the
specific ML Pipeline
step.

Potential ML
Pipeline
Causes

This column
maps to the
PFMEA
Potential
Effects of
Failure column.

This column is
populated with
specific potential
causes of the ML
model failure modes.

Current ML
Pipeline Best
Practice or
Process
Control

This column
maps to the
PFMEA
Current
Controls

This column is
populated with ML
Pipeline best practices
or process controls
that potentially
mitigate the particular
ML failure mode.

Example rows

To clarify the benefits of the ML FMEA Template, a few example rows are provided from
the Ingesting Data pipeline step.

As described within the ML FMEA Method Preprocess Data pipeline process step above
a potential failure of Preprocess Data is “Poor handling of missing values can introduce
biases”. See Figure 4. Within the ML FMEA Template this actually maps to a cause the
Preprocess Data failure mode of “Insufficient data processing”, from the guide word
“Missing”. Within the Template, the ML Pipeline Best Practice is “Standardize Data
Cleaning Procedures:..” as described above.

From the guide word “Incorrect”, the next Preprocess Data failure mode “Insufficient data
preprocessing” cause is “Incorrect normalization or scaling can distort relationships in the
data”. Within the ML FMEA Template this is linked to the ML Pipeline Best Practice,
“Automate Feature Engineering:…” as described above.

The third Preprocess Data failure mode, from the guide phrase “Too little” is “Insufficient
data preprocessing”. The associated cause is “Inadequate feature engineering can lead
to suboptimal model performance”. Within the ML FMEA Template this is linked to the
ML Pipeline Best Practice, “Document Transformations”. See Figure 4.

Torc Public | Page 16 of 23

Figure 4. Example ML FMEA rows from the Preprocess Data ML Pipeline step.

The Detailed Template

Figure 5 below is an excerpt of the ML FMEA Template containing the first two ML
Pipeline Steps. The full ML FMEA Template is provided in the Appendix for reference.
Additionally, the ML FMEA Template is also available for review and download from
github at https://github.com/TallPaul67/MachineLearningFMEA.

Figure 5. Excerpt of the full ML FMEA Template containing the first two ML Pipeline
steps: Collect Data Requests and Collect Data. Full version is available for reviewing

and download on github at github.com/TallPaul67/ MachineLearningFMEA

Discussion

This paper argues that the ML FMEA method and the ML FMEA Template are novel
contributions that address gaps in the applicable standards involving the development
and deployment of ML in safety critical applications across industries including
automotive, autonomous vehicles, defense and security, healthcare, pharmaceuticals,
manufacturing and industrial robotics, warehouse distribution, and aerospace. The ML

Torc Public | Page 17 of 23

FMEA approach is not designed to be a stand-alone tool, but rather key part of a
comprehensive safety management system and safety case.

Some of the benefits of the ML FMEA method and the ML FMEA Template applied to the
ML pipeline include:

1. The ML FMEA method can directly identify steps in the ML pipeline that could have
the highest impact on risk and can therefore get higher levels of attention and
diligence.

2. The ML FMEA method can aid in demonstrating agreement with ISO TR 5469 which
recommends a PFMEA for the offline training process.

3. The ML FMEA method can aid in compliance with ISO PAS 8800 which requires the
employment of an engineering rigor best practice.

4. The ML FMEA Template can be used as a “checklist” to ensure that no critical steps
were missed in the ML pipeline development.

5. The ML FMEA Template can serve as a quick reference in the event of a
performance limitation or failure in the field, providing the ability to quickly go back
and review all the potential failures and mitigations to check if something in the ML
pipeline was not sufficiently addressed and led to the performance degradation or
failure, resulting in an update to the ML FMEA Template.

6. The ML FMEA Template provides a systematic way of identifying and documenting
functional insufficiencies and mitigations associated with the ML pipeline.

7. The ML FMEA Template and ML FMEA method can serve as important evidence
artifacts supporting a safety case claim that the ML pipeline was developed with the
highest level of rigor.

8. Since the ML FMEA Template generally follows the Process FMEA flow, the
approach is designed to be transparent and familiar to reviewers and experienced
safety professionals.

The ML FMEA is a specific methodology that can address many if not all of the required
and recommended activities described in the most widely followed standards governing
the development and deployment of autonomous vehicles.

Future Work

The field of safety engineering analysis applied to machine learning is new with limited
examples. Future work is needed to demonstrate a proof of concept that provides an
example benefits of an applied ML FMEA approach.

In a subsequent publication the authors intend to describe specific examples and benefits
of applying the ML FMEA method.

Additionally, it is worth noting that during the research and development of this approach
a trend emerged. When looking across the full ML Pipeline, potential failure modes fit
into three categories:

1. Data Issues: including bias, insufficient data or outdated data
2. Model Limitations: including over or under fitting
3. Deployment limitations: including integration failures or scalability

The authors plan to study this classification further and evaluate as potential ML failure
mode guide words, in a manner similar to FMEA guide words. [26]

Torc Public | Page 18 of 23

References

[1] ISO21448, "Road Vehicles – Safety of the Intended Functionality," Geneva,
Switzerland, 2022.

[2] UL4600, Standards for Safety for the Evaluation of Autonomous Products,
Underwriters Laboratory, 2019.

[3] ISO PAS 8800: Road Vehicles – Safety and Artificial Intelligence, Geneva,
Switzerland: International Organization for Standardization, Under development.

[4] ISO TR 5469: Artificial intelligence — Functional safety and AI systems, Geneva,
Switzerland: International Standards Organization, 2024.

[5] R. Salay and K. Czarnecki, "Using Machine Learning Safely in Automotive
Software: An Assessment and Adaption of Software Process Requirements in
ISO 26262," 2018. [Online]. Available: https://arxiv.org/abs/1808.01614.

[6] S. Studer, T. B. Bui, C. Dreshcer, A. Hanuschkin, L. Winkler, S. Peters and K.-R.
Müller, "Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology.," Machine Learning and Knowledge Extraction, vol. 3,
no. 2, pp. 392-413, 2021.

[7] J. Faria, "Machine Learning Safety: An Overview," in Safety-critical Systems
Symposium, 2018.

[8] S. Mohseni, H. Wang, C. Xiao, Z. Wang and J. Wadawa, "Taxonomy of Machine
Learning Safety," [Online]. Available: https://arxiv.org/pdf/2106.04823.

[9] R. Salay, M. Angus and K. Czarnecki, "A Safety Analysis Method for Perceptual
Components in Automated Driving,," in 2019 IEEE 30th International Symposium
on Software Reliability Engineering (ISSRE), Berlin, 2019.

[10] E. Murphy, "STPAI: Leveraging STPA to Safeguard the Development of an AI
Chatbot," in International System Safety Society, Minneapolis, 2024.

[11] X. Huang, G. Jin and W. Ruan, Assurance of Machine Learning Lifecycle,
Springer, 2012.

[12] J. Rellermeyer, P. Heck and Y. Xie, "Systematic Mapping Study on the Machine
Learning Lifecycle," in IEEE/ACM 1st Workshop on AI Engineering , 2021.

[13] E. Zeydan, S. S. Arslan and M. Liyanage, "Managing Distributed Machine
Learning Lifecycle for Healthcare Data in the Cloud," in IEEE Access, 2024.

[14] AIAG and VDA FMEA Handbook, Automotive Industry Action Group and
Verband der Automobilindustrie, 2022.

Torc Public | Page 19 of 23

[15] Potential Failure Mode and Effects Analysis Including Design and Process
FMEA, SAE Standard J1739: SAE International, Revision January 2021.

[16] "Standard for Performing a Failure Mode and Effects Analysis and Establishing a
Critical Items List," NASA Goddard Space Flight Center, [Online]. Available:
https://rsdo.gsfc.nasa.gov/documents/rapid-iii-documents/mar-reference/gsfc-
fap-322-208-fmea-draft.pdf.

[17] "Guidance for Performing Failure Mode and Effects Analysis with Performance
Improvement Projects," Food and Drug Administration (FDA), [Online]. Available:
https://www.cms.gov/medicare/provider-enrollment-and-
certification/qapi/downloads/guidanceforfmea.pdf.

[18] "NCPS Patient Safety Improvement Handbook," U.S. Department of Veterans
Affairs, [Online]. Available:
https://www.patientsafety.va.gov/professionals/publications/handbook.asp.

[19] R. Greer and M. Trivedi, "Towards Explainable, Safe Autonomous Driving with
Language Embeddings for Novelty Identification and Active Learning:
Framework and Experimental Analysis with Real-World Data Sets," in
arxiv.org/pdf/2402.07320, 2024.

[20] E. Olson, "A passive solution to the sensor synchronization problem," in
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.

[21] H. Sommer, R. Khanna, I. Gilitschenski, Z. Taylor, R. Siegwart and J. Nieto, "A
low-cost system for high-rate, high-accuracy temporal calibration for LIDARs and
cameras," in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS),, 2017.

[22] M. Quigley, B. Gerkey and W. Smart, Programming Robots with ROS, O'Reilly,
2015.

[23] D. Bogdoll, M. Nitsche and J. M. Zöllner, "Anomaly Detection in Autonomous
Driving: A Survey," in arxiv.org/pdf/2204.07974, 2022.

[24] M. Bernhardt, D. Castro, R. Tanno, A. Schwaighofer, K. Tezcan, M. Monteiro, S.
Bannur, M. Lungren, A. Nori, B. Glocker, J. Alvarez-Valle and O. Oktay, "Active
label cleaning for improved dataset quality under resource constraints," in Nature
Communications, 2022.

[25] Z. Leng, G. Li, C. Liu, E. Cubuk, P. Sun, T. He, D. Anguelov and M. Tan,
"LidarAugment: Searching for Scalable 3D LiDAR Data Augmentations," in
ICRA, 2023.

[26] ISO26262, "Road vehicles — Functional safety," in International Standards
Organization, Geneva, Switzerland, 2018.

Torc Public | Page 20 of 23

Acknowledgments

The authors wish to acknowledge the support of TORC Robotics and TUV Rheinland in
the collaboration, development and publishing of this material.

.

Torc Public | Page 21 of 23

Appendix

The ML FMEA Template for reference is provided. Note the pre-populated columns Machine Learning Pipeline Step,
Potential Failure Mode of the ML Model of Interest, Potential ML Pipeline Causes, Current ML Pipeline Best Practice or
Process Control. The detailed ML FMEA Template is also available for review and download from github at
https://github.com/TallPaul67/MachineLearningFMEA.

Torc Public | Page 22 of 23

Torc Public | Page 23 of 23

